
GANSO: Automate Network Slicing at the
Transport Network Interconnecting the Edge

José Takeru Infiesta∗, Carlos Guimarães∗, Luis M. Contreras†, Antonio de la Oliva∗
∗Universidad Carlos III de Madrid, Spain

†Transport & IP Networks, Telefónica I+D / Global CTIO Unit, Madrid, Spain
Email: jtinfiesta@gmail.com, cmagalha@pa.uc3m.es, luismiguel.contrerasmurillo@telefonica.com, aoliva@it.uc3m.es

Abstract—5G and Edge computing are two technologies set
to impose a paradigm shift from today’s traditional networking
solutions. In particular, transport networks, which connect dis-
tinct computing infrastructures, must guarantee a wide range of
performance requirements from coexisting network services. 5G
network slicing enables such capability by providing the flexibility
to support multiple and isolated virtual networks over the same
and shared infrastructure. This paper introduces the GST And
Network Slice Operator (GANSO) framework for automating the
creation of network slices over SDN architectures, focusing on
transport networks interconnecting Edge data centers. To char-
acterise the type of network slice to be deployed, it uses Generic
network Slice Templates (GSTs). Initially, five GST attributes are
implemented in a proof-of-concept prototype, namely through
configurable User Data Access and Rate Limit parameters. It
is then validated in a scenario considering the instantiation of
network slices over the transport network for different virtual
applications hosted across the edge-to-cloud continuum.

Index Terms—Network Slicing, GST, SDN, Transport, Edge

I. INTRODUCTION

The concept of multiple edge data centers has been in-
troduced to overcome the limited resources and computing
power of single and isolated edge instances. By exploiting
the locally distributed edge data centers, usually co-located
with the Radio Access Network (RAN) (e.g., base stations
and aggregation points), the workload required by different
network services can be balanced among the resources of
collaborative computing nodes. Multiple deployment arrange-
ments (e.g., hierarchical- and mesh-based) can be employed
to connect the different (edge) data centers together. Transport
networks (e.g., access network, metropolitan area network and
core network) play a key role in their interconnection and,
consequently, network slicing at the transport network – the
transport slice – is essential to glue all the virtual applications
of a given network service while providing guarantees with
respect to their key performance indicators (KPIs).

Network slicing is expected to become the new manner
of providing services on telecom networks, mostly pushed
by the introduction of 5G services which are natively built
on top of slices. Through network slicing, telecom operators
can allocate partitions of a physical infrastructure (including
computing, storage and networking resources) to different
vertical customers which run their respective services as if
the specific partition was a dedicated network.

The network slices are defined end-to-end (E2E) comprising
different network segments such as access, core and transport.

In the case of 5G, the 3GPP [1] considers an overarch-
ing 3GPP Management System that interacts with different
domain-specific controllers per segment. The network slices
are requested to the 3GPP Management System by means
of templates used to specify their concrete characteristics
according to the requirements of each particular vertical cus-
tomer. The GSMA has defined a generic blueprint that may
be used by any kind of vertical customer to specify its needs.
Such a blueprint is known as Generic network Slice Template
(GST) [2], containing 35 parameters on its latest version. The
vertical customer, when specifying the values for this generic
blueprint, forms what is known as a NEtwork Slice Type
(NEST) that is the actual input to the 3GPP Management
System. From an operational point of view, the telecom
provider might support both Standardised- and Private-NEST.
While Standardised-NEST pertain to those elaborated in a
normalised way by distinct organisations (e.g., 5G-ACIA in
the case of Industry 4.0), Private-NEST are directly customised
and created by the telecom provider.

At the transport network segment, the NEST is processed
to extract requirements that directly apply to the creation and
instantiation of the transport slice. This consists on identify-
ing parameters that have a direct or an indirect impact on
the selection of transport resources to form the E2E slice
connectivity. Some attributes can be directly translated into
transport network requirements [3] (e.g., “slice throughput”),
while others have indirect implications (e.g., “latency from
(last) UPF to the application server”) with respect to the
location of the application (e.g., edge or central cloud) and
the resources to be committed in the transport network to
reach it. Thus, from the perspective of the transport network
control entities it is essential to account on mechanisms for
assisting on such translation, resulting on the instantiation of
the transport network slice.

This paper focuses on that provisioning of network slices in
the transport segment based on the concept of slice templates.
It proposes the GST And Network Slice Operator (GANSO), a
framework developed to automate the provisioning of network
slices over Software Defined Networking (SDN) infrastruc-
tures (e.g., for connection between edge data center(s), central-
ized and/or public clouds). This framework leverages on GSTs
to define the network slice type and that are then translated and
mapped into the network resources and parameters required
for its instantiation. Section II introduces related work linked



to the concept and purpose of network slicing. Section III
presents the proposed framework, whose validation, through
a proof-of-concept prototype, and initial results are shown in
Section IV. Finally, Section V provides concluding remarks
and future work.

II. BACKGROUND AND RELATED WORK

In this section the relevant concepts leveraged on this work
are briefly recapped and framed under their relevance to
automate the provisioning of network slicing. Afterwards, the
existing state of the art linked to the concept and purpose of
network slicing automation is identified.

A. Software Defined Networking (SDN)

Software Defined Networking (SDN) [4] decouples the data
and control planes, logically placing the latter in a centralised
controller node as opposed to traditional networks in which
both are embedded within forwarding devices. While this
controller decides how to forward packets, forwarding devices
are left out to perform the configured actions. Such approach
has paved the way for a reliable and fast network programma-
bility which is achieved through two interfaces: (i) Northbound
API, which provides applications with an abstract view of the
network so that the control plane can be easily configured;
and (ii) Southbound API, which enables the controller to
communicate with the data plane elements.

By doing so, SDN can contribute to the automation of the
provisioning of network slices as it allows the desired network
behaviour to be conveyed to the controller which, in turn, is
responsible for enforcing said behaviour onto the underlying
forwarding devices as well as enabling network resources to
be distributed among different network slices.

B. GST and NEST

The concept of Generic network Slice Template (GST) and
NEtwork Slice Types (NEST) [2] was developed to aid in
the automation of the process of designing and instantiating
network slices for network operators. Whereas both are used to
describe a network slice the main difference between the two
is that while the former models a network slice by containing
the names of the attributes that characterise it, the latter defines
the actual values of these attributes for a particular network
slice. NESTs can then be interpreted by the network operator
so that it can instantiate network slices that comply with the
specifications of its requester.

By doing so, GST and NEST can contribute towards the
automation of the provisioning of network slices as both
define a common set of generic attributes that can convey the
communication requirements of different network slices.

C. Network Slicing of Transport Network

Network slicing is a concept introduced by the 3rd Gener-
ation Partnership Project (3GPP) organisation’s Release 15
for the standardisation of 5G. The physical infrastructure is
virtualised such that its resources can be distributed among
logical independent networks that simultaneously serve differ-
ent customers with specific requirements.

This concept is pushing towards programmable transport
networks where different network services can be accom-
modated and coexist simultaneously. Such design is being
leveraged by several SDN/NFV-based E2E network slicing
solutions. 5G-TRANSFORMER [5] is an example of such
approach that aims to bring the network slicing paradigm into
SDN/NFV-based mobile transport networks by provisioning
and managing slices tailored to specific requirements. Another
example is proposed in [6] where a slice management and
orchestration framework is defined. The former work defines
a layered concept where higher layers provide an abstraction
from the lower layers, with the top layer providing a set of
interfaces to allow the vertical to monitor and operate the
slice. The latter work proposes a control, management and
orchestration platform that forwards requests to the respective
controllers that implement the data path on the underlying
SDN-switches. Other works [7][8][9] also leverage on the
usage of SDN mechanisms to configure the data plane of
network slices.

SliMANO framework [10] is proposed as a plug-in based
framework that automated instantiation of E2E network slices
over the different network segments. Requests are made
through a custom-made Northbound API and, later, trans-
lated by the SliMANO framework to the necessary network
operations. With respect of network slicing at the transport
network, its interaction with the network controller (e.g., an
SDN controller) is limited to the (re)configuration of the
datapath, not defining or implementing any mechanism to
define or enforce the requirements of the network slice.

Proponents of the previous work already exploit, although
limited, the use SDN to implement slicing on the transport
network. The previous works either consider custom-made
interfaces to define the requirements of the network slices or
focus only on the provisioning of the data plane forwarding
for the network slice disregarding any of their requirement.
This work advances on the state of the art by leveraging on:
(i) the use of GST and NEST as a uniform and accepted
characterization of a network slice; and (ii) the use of SDN at
the transport network not only to configure the data path for
a given network slice but also to enforce its requirements.

III. GANSO: GST AND NETWORK SLICE OPERATOR

The GST And Network Slice Operator or GANSO (which
is Spanish for ‘goose’) is a proof of concept framework
developed as a means to automate the creation, deployment
and instantiation of network slices over Software Defined
Networking (SDN) infrastructures. This framework also offers
a set of management mechanisms to aid the network admin-
istrator on its interaction with the underlying network.

A. GANSO Framework Overview

Due to the flexibility and the degree of network person-
alisation provided by SDN, GANSO has been developed to
instantiate network slices over architectures that follow this
networking paradigm. As such, it exploits many features en-
abled by SDN, like reliable and fast network programmability.



As depicted in Figure 1, GANSO is provided as an ap-
plication residing on the SDN Application Layer. Using the
Northbound API(s) exposed by the underlying controller(s),
it is able to convey its requests for network slices, along
with their requirements, to the SDN Control Plane Layer. In
turn, the controller translates the requested network behaviour
into rules that are understood by the forwarding devices that
perform packet forwarding, being implemented in the SDN
Data Plane Layer through a Southbound API.

    SDN controllers

    Network abstractions

Networking
devices

SOUTHBOUND API

Network
infrastructure

NORTHBOUND API

APPLICATIONS

END USERS

DATA PLANE

CONTROL
PLANE

Fig. 1. GANSO Placement at the SDN Architecture Planes

For the time being, GANSO relies upon Open Network Op-
erating System (ONOS) — an open source controller proposed
by the Open Networking Foundation (ONF) — to represent
the control plane of a SDN network, as it allows network con-
figuration with high availability, scalability and performance
through strong abstractions. Nevertheless, GANSO is flexible
to be integrated with different controllers through extensions
to use their Northbound API.

Being implemented as an ONOS application, GANSO takes
advantage of the Northbound API defined by ONOS to directly
instruct the controller to create and instantiate network slices.
Specifically, GANSO communicates with the REST API ex-
posed by ONOS which bases the exchange of information on
the JSON format. Therefore, a request for a network slice is
interpreted by GANSO and translated into a JSON-formatted
description of the network slice’s behaviour. Subsequently, it
is sent through POST requests to the ONOS REST API.

Upon receiving the JSON data, the controller reads its
content and sets the rules that enforce the requested behaviour
in the underlying forwarding devices through the Southbound
API, thus creating a network slice that fulfils and delivers the
user’s network requirements. For this purpose, ONOS uses the
OpenFlow protocol [11] and, therefore, forwarding devices
must be compliant with OpenFlow (e.g., Open vSwitch) in
order to enable their communication with the controller and
the configuration of desired network behaviour.

When OpenFlow is used in an SDN infrastructure, the con-
troller essentially configures the flow tables of each forwarding

device, inserting, removing and modifying flow entries that
serve as rules that specify how a packet matching a given
criteria must be processed. Thus, GANSO also relies on
OpenFlow for the creation of the different flow entries in the
forwarding devices that match the network slice’s attributes
configured at the GANSO application through GSTs/NESTs.

B. Network Slice Request Workflow

The creation and instantiation of a new network slice (whose
workflow is represented in Figure 2) is initiated by the user
by issuing a request towards the GANSO application (step 1).
Whenever a new request is received, GANSO provides a GST
form to be filled by the user (step 2) and expects a NEST
to be returned with the desired network slice configuration
and requirements (step 3). Upon receiving the NEST, GANSO
triggers the instantiation of the requested network slice in the
underlying network (step 4).

Requirements

User

Network

NESTGST

Network
slice

GANSO

Instantiation

1. User requests slice

2. GANSO shows GST form

3. User returns NEST

4. GANSO instantiates slice 

1

4

3

2

Fig. 2. GANSO - Network Slice Request and Instantiation Workflow

Throughout this process GANSO executes a set of internal
procedures (Figure 3). First, it reads the values of the attributes
configured in the NEST, mapping them into an XML file that
contains the information of the network slice and that is subse-
quently stored. Alternatively, GANSO allows users to directly
upload their own NEST XML provided that these are properly
formatted. The NEST XMLs are then translated into JSON
format (as referred in the previous Section) and processed such
that the corresponding network slice is instantiated.

C. Supported (GST) Attributes

Currently, GANSO implements, as a proof-of-concept, two
attributes that can be set while creating the network slices:
User Data Access and Rate Limit. The decision to implement
these attributes over others was based on the fact that they
not only showcase different behaviors that are expected to
be supported by slices but also because these are parameters
typically requested by customers. Additionally, these can be
directly mapped into five GST attributes: User Data Access,
Maximum Downlink Throughput per UE, Maximum Uplink
Throughput per UE, Guaranteed Downlink Throughput per
UE and Guaranteed Uplink Throughput per UE.

• User Data Access: this parameter is declared as manda-
tory in the GST definition of a network slice and it is



Fig. 3. GANSO - From GST to JSON Format

used to define the level of connectivity allowed within
the network slice (i.e., how the network slice handles
the user data) through three options: (i) Direct Internet
access, where devices can directly access the Internet; (ii)
Termination in the private network, where devices can
only communicate in the private network; and (iii) Local
traffic, where no connection whatsoever is allowed (i.e.,
all data traffic stays local and devices do not have access
to the Internet or private network). Thus, when filling
a GST, users are able to choose one of these options,
with the default value being Direct Internet access. When
the Termination in private network option is selected,
GANSO creates two rules per device (or subnet): (i) one
that enforces forwarding of packets sent by the specified
device (or subnet) to destinations belonging to the same
network; and (ii) one for dropping packets sent by the
specified device (or subnet) to destinations which are
external to the network. Finally, when the attribute has
value Local traffic only one rule that drops all packets
sent by a specified device (or subnet) is required.

• Rate Limit: this attribute enables defining the maximum
throughput, either in downlink or uplink, allowed to a
given device (i.e., UE), as described by the Maximum
Downlink Throughput per UE and Maximum Uplink
Throughput per UE attributes in the GST. In addition,
by leveraging on this same attribute, GANSO is also
able to guarantee that the requested throughput, either for
downlink or uplink, is provided when enough bandwidth
is available, as defined by the Guaranteed Downlink
Throughput per UE and Guaranteed Uplink Throughput
per UE attributes in the GST. When filling the GST,

a GANSO user can set this limit in Kbps, with the
default value being none. To enforce the Rate Limit in
the underlying network, GANSO creates flow and meter
entries in the forwarding devices to drops all incoming
packets whose throughput surpasses the configured limit.

D. Integration with ONOS and OpenFlow

As described in the previous sections, GANSO is im-
plemented as an application that relies on ONOS and the
OpenFlow protocol to configure the underlying SDN network.

1) Bootstrap and Communication: Upon startup, GANSO
connects to the controller of the network and learns which
forwarding devices are under the domain of the controller.
This is an essential step during its bootstrap so that GANSO
can identify to which devices the POST requests must be sent
when rules are created. As mentioned before, GANSO com-
municates and configures ONOS through its REST API which
understands data formatted in JSON. Thus, for each flow
and meter entry to be installed in the forwarding devices via
OpenFlow, a POST request that describes said entry element
needs to be defined and sent to the controller. Furthermore,
one request per flow entry must also be sent for each specified
device (or subnet) and each forwarding device that sits in the
network. The IP address of the device (or subnet) will be used
as the matching criteria for packets in the flow entry such that
isolation and multiplexing of slices are provided.

It should be noted that in OpenFlow-enabled devices, read-
ing and processing rules follows a strict order. Packets are
sequentially compared to flow entries from highest to lowest
priority on each available flow table. This process stops when a
packet matches any flow entry or the last entry of the last flow
table is reached. When a packet matches the criteria set by a
flow entry, the instructions associated to it are applied. Thus,
when creating network slices the priority of the attributes must
be taken into consideration, otherwise the expected behavior
is not correctly implemented in the forwarding devices.

2) Attribute Implementation: An example of the ingress
packet processing pipeline configured in a forwarding device
is shown in Figure 4, where different configurations for both
User Data Access and Rate Limit attributes are depicted.

Since User Data Access attribute defines the connectivity
level allowed to a given device (or subnet), flow entries to
implement this parameter must have a higher priority than the
ones to implement the Rate Limit attribute.

User Data Access: Flow entries of User Data Access
attribute are allocated in Flow Table 0. When the Local traffic
option is set, the flow entries must be defined with the highest
priority and with the defined action to drop all matching
packets (i.e., UDA rule 2). If the Termination in the private
network is set, flow entries must be second in priority with
defined action to forward the packets to be matched by flow
entries in Flow Table 1 (i.e., UDA rule 1). Lastly, if the default
value Direct Internet access is set no additional flow entries
are required (i.e., ONOS forwarding rules).

Rate Limit: The rules for the Rate Limit attribute, which
have lower priority, are contained in Flow Table 0 (i.e.,



SwitchId = of:0000000000000001

Output
port

TableId = 1

ONOS forwarding rules

- Priority 40000; If: ARP, Then: Forward to ONOS
- Priority 40000; IPv4, Then: Forward to ONOS
- Priority 40000; LLDP, Then: Forward to ONOS

MeterId = 1

Meter entry

- If: rate >= 50000kbps,
      Then: DROP;
  Else: return packet;

Rate limit rule 2

- Priority 50000;
- If: IPSRC = 10.0.0.10/32,
      Then: Forward packet to Meter 1;
      If: packet returned,
         Then: Forward to ONOS;

Input
port

TableId = 0

UDA rule 1

- Priority 60000;
- If: IPSRC = 10.0.0.10/32 & IPDST = 10.0.0.0/16,
      Then: Forward packet to Table 1;

UDA rule 2

- Priority 55000;
- If: IPSRC = 10.0.0.10/32 & IPDST = 1.0.0.0/8,
      Then: Discard;

Rate limit rule 1

- Priority 50000;
- If: IPSRC = 10.0.0.10/32,
      Then: Forward packet to Meter 1;
      If: packet returned,
         Then: Forward to ONOS;

ONOS forwarding rules

- Priority 40000; If: ARP, Then: Forward to ONOS
- Priority 40000; IPv4, Then: Forward to ONOS
- Priority 40000; LLDP, Then: Forward to ONOS

Fig. 4. Example of the Packet Processing Pipeline

Rate limit rule 1) if the User Data Access attribute has been
configured with the default Direct Internet access option. If
User Data Access is set to another mode, Rate Limit flow
entries must exist in Flow Table 1 too (i.e., Rate limit rule 2)
so that the attribute is processed. These flow entries forward
matching packets to the meter entries that are configured to
drop all packets when the throughput is over a given threshold.

IV. VALIDATION RESULTS

This section provides an assessment of the proposed
GANSO framework through its implementation and testing
over Mininet, as the emulator of an SDN network topology,
and the ONOS controller, as the SDN controller managing
the network. A set of experiments were conducted to val-
idate not only the correct implementation of the supported
GST attributes but also to showcase the automation of the
configuration and instantiation of network slices over SDN
infrastructures through the GANSO framework.

A. Experiment Network Topology

The validation presented in this section has been carried
over an emulated network (as depicted in Figure 5), composed
by three edge nodes (i.e, e1, e2, e3), one core data center (i.e.,
c1), two Open vSwitch switches (i.e., s1 and s2) that support
OpenFlow and an ONOS controller. These are interconnected
through virtual links configured with a bandwidth of 10 Mbps.
Moreover, this network is connected to the Internet through a
NAT which enables connectivity towards external hosts (i.e.,
Cloud DC). Virtual applications (i.e., vApps) are hosted on
the edge nodes, core and cloud data centers, as depicted in
Figure 5.

B. Experiment 1: User Data Access

The User Data Access attribute defines how the network
slice should handle user data: locally only, private network,
open to Internet (e.g, for far edge, local edge(s) or public
cloud connections). As such, in the following experiment, ping

Controller
vApp1

vApp3

vApp2

NAT
Internet

s1

Access
network

vApp4Metropolitan
Area Network

s2
Core
network

vApp5

e1

e2

e3

c1

Cloud DC

Fig. 5. Experiment topology

command is used to test the different levels of connectivity
allowed within the network slice. Specifically, vApp1 (hosted
on edge e1) issues ICMP request messages to both vApp5

(hosted on the cloud) and vApp2 (hosted on edge e2). The
obtained results are presented in Figure 6.

Fig. 6. User Data Access Experiment

Initially, the network slice corresponding to vApp1 is con-
figured with User Data Access attribute set to Direct Internet
access. Both request messages are delivered to their destina-
tions (i.e., vApp5 and vApp2), with the correspondent replies
being successfully received by vApp1 (average round-trip time
of 5.29ms and 0.119ms, respectively).

At time 20 seconds, the network slice is reconfigured with
the User Data Access attribute set to Termination in the private
network. As expected, while connectivity to the vApp5 was
lost, connectivity to vApp2 remained active but the round-
trip time of the ICMP messages increased to 1.690ms. As
additional flow entries are introduced in the switches, packets
from vApp1 need to be matched against these new entries
which increases the processing time within the switch.

Finally, at time 40 seconds, the network slice is reconfigured
again with the User Data Access attribute set to Local traffic.
As this option sets the traffic as local only, the connectivity
towards vApp2 is also lost.

C. Experiment 2: Rate Limit

The Rate Limit attribute defines the amount of bandwidth
allocated to a given network slice. As such, in this experiment
iperf is used to generate constant traffic flows, while the



Rate Limit attribute is reconfigured on different network slices.
Specifically, vApp1, vApp2 and vApp3 act as iperf clients while
vApp4 acts as an iperf server. During the experiment, the
following Rate Limits are configured on each network slice:

E0 (t = 0s): No Rate Limit set to any network slice.
E1 (t = 19s): vApp1’s network slice set to 5.5 Mbps.
E2 (t = 39s): vApp2’s network slice set to 1.5 Mbps.
E3 (t = 59s): vApp3’s network slice configured with with

User Data Access set to Local traffic.
The obtained results are presented in Figure 7.

Fig. 7. Rate Limit Experiment

At E0, vApp1, vApp2 and vApp3 are able to transmit at
4 Mbps, 3 Mbps and 3 Mbps, respectively. As Rate Limit is
not set to any network slice, this allocation is done by Mininet.

At E1, the throughput of vApp1 increases to 5.5 Mbps, as
opposed to the other two vApps which see their throughput
decrease to around 2.25 Mbps. This behaviour is due to the
Rate Limit also acting as guaranteed throughput when there is
enough bandwidth available to satisfy the request.

At E2, the opposite behavior is seen, where the Rate Limit
imposes the maximum throughput allowed to vApp2. This
releases bandwidth which is taken by vApp3.

Moreover, upon reconfiguration of the Rate Limit in both
E1 and E2 a brief surge in the throughput is observed after
which it gets stabilised around the configured threshold.

Finally, upon E3, the throughput of vApp3 goes to 0 Mbps
as it has only local connectivity, but the other two vApps
do not take advantage of the released bandwidth due to the
configured Rate Limit. Although the average throughput of
the latter vApps remains near the set Rate Limit, it becomes
less stable because packets from vApp3 are only dropped at
switch s1, imposing an additional packet processing.

V. CONCLUSIONS

The instantiation of E2E services, which might comprise
virtual applications distributed across multiple edge data cen-
ters (and centralized and/or public clouds), require network
slicing to be applied into different network segments. Trans-
port networks are one of these segments, as they intercon-
nect the different components that compose a given service.

This paper proposes the GST And Network Slice Operator
(GANSO) framework, developed to automate the customisa-
tion and creation of network slices in the transport network,
namely over SDN infrastructures. GST attributes are used to
characterise a type of network slice and mapped towards the
network resources and parameters required to its instantiation
over the underlying network. User Data Access and Rate Limit
attributes are implemented in a proof-of-concept prototype and
validated through a set of experiments that focused on the
instantiation of network slices, over the transport network, for
different virtual applications.

Future work will focus on the support of the remaining
GST attributes and a fully network slice lifecycle management.
These extensions, together enhancements on traffic prediction,
will enable an intelligent and automated transport slice man-
agement, so that network slices can be dynamically reconfig-
ured to make an efficient use and allocation of the available
resources without degradation of the deployed services.

ACKNOWLEDGMENTS

This work has been (partially) funded by H2020 EU/TW
5G-DIVE (Grant 859881) and H2020 5Growth (Grant
856709). It has been also funded by the Spanish State Research
Agency (TRUE5G project, PID2019-108713RB-C52PID2019-
108713RB-C52 / AEI / 10.13039/501100011033)

REFERENCES

[1] 3GPP, “Management and orchestration; Provisioning,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 28.531, Mar.
2020, version 16.5.0.

[2] GSMA, “Generic network Slice Template, Version 3.0,” May 2020.
[3] L. M. Contreras, S. Homma, and J. A. Ordonez-Lucena, “Considerations

for defining a Transport Slice NBI,” Internet Engineering Task Force,
Internet-Draft draft-contreras-teas-slice-nbi-02, Jul 2020.

[4] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[5] A. de la Oliva, X. Li, X. Costa-Perez, C. J. Bernardos, P. Bertin, P. Io-
vanna, T. Deiss, J. Mangues, A. Mourad, C. Casetti, J. E. Gonzalez, and
A. Azcorra, “5G-TRANSFORMER: Slicing and Orchestrating Transport
Networks for Industry Verticals,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 78–84, 2018.

[6] P. K. Chartsias, A. Amiras, I. Plevrakis, I. Samaras, K. Katsaros,
D. Kritharidis, E. Trouva, I. Angelopoulos, A. Kourtis, M. S. Siddiqui,
A. Viñes, and E. Escalona, “SDN/NFV-based end to end network
slicing for 5G multi-tenant networks,” in 2017 European Conference
on Networks and Communications (EuCNC), 2017, pp. 1–5.

[7] I. Afolabi, M. Bagaa, T. Taleb, and H. Flinck, “End-to-end network
slicing enabled through network function virtualization,” in 2017 IEEE
Conference on Standards for Communications and Networking (CSCN),
2017, pp. 30–35.

[8] D. Giatsios, K. Choumas, P. Flegkas, T. Korakis, and D. Camps-Mur,
“SDN implementation of slicing and fast failover in 5G transport net-
works,” in 2017 European Conference on Networks and Communications
(EuCNC), 2017, pp. 1–6.

[9] D. Giatsios, K. Choumas, P. Flegkas, T. Korakis, J. J. A. Cruelles, and
D. C. Mur, “Design and Evaluation of a Hierarchical SDN Control Plane
for 5G Transport Networks,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1–6.

[10] F. Meneses, M. Fernandes, D. Corujo, and R. L. Aguiar, “SliMANO:
An Expandable Framework for the Management and Orchestration of
End-to-end Network Slices,” in 2019 IEEE 8th International Conference
on Cloud Networking (CloudNet), 2019, pp. 1–6.

[11] Open Networking Foundation (ONF), “OpenFlow Switch Specification,
Version 1.5.1,” Mar. 2015.


